

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 202 (2003) 23-29

www.elsevier.com/locate/molcata

Selenium-catalyzed carbonylation of substituted nitrobenzenes with aminomethylpyrimidines as co-reagents to synthesize *N*-phenyl-*N*'-methylpyrimidylurea derivatives

Gang Ling, Jinzhu Chen, Shiwei Lu*

National Engineering Research Center for Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, PR China

Received 30 October 2002; accepted 26 February 2003

Abstract

A series of *N*-phenyl-*N'*-methylpyrimidylurea derivatives have been synthesized via selenium-catalyzed reductive carbonylation of substituted nitrobenzenes with aminopyrimidine derivatives as co-reagents and carbon monoxide as carbonyl reagent instead of phosgene in one-pot reaction.

© 2003 Elsevier Science B.V. All rights reserved.

Keywords: Reduction; Carbonylation; Methylpyrimidylurea; Selenium

1. Introduction

Pyrimidylurea derivatives used as immunosuppresants and anti-viral agents were found about 30 years ago [1,2]. These pyrimidylurea derivatives provide a method of treatment of autoimmune diseases and viral infection in mammals, excluding man.

Traditionally, pyrimidylureas have been obtained by reacting aminopyrimidines with isocyanates; however, such process has several disadvantages such as the use of toxic phosgene, the formation of large quantities of corrosive hydrogen chloride as a secondary product and furthermore, the presence of difficult-to-remove hydrolyzable chlorine compounds. Accordingly, there are numerous attempts to produce urea derivatives by using non-phosgene methods. Since aromatic amines

fax: +86-411-369-8749.

are generally obtained by the reduction of aromatic nitro compounds, one of the promising approaches is the reductive carbonylation of aromatic nitro compounds with carbon monoxide in the presence of an appropriate catalyst to give urea derivatives in one-pot reaction. A few of effective catalyst systems have been reported for preparing urea derivatives via reductive carbonylation of aromatic nitro compounds. The VIII group transition metals, such as rhodium, ruthenium and palladium are commonly used as catalysts for this purpose [3].

Recently, non-transition elements usually and sulfur have also been found to catalyze the synthesis of urea derivatives. Franz et al. reported sulfur mediated reactions to give symmetrical ureas by oxidative carbonylation of amines [4,5], in these cases, the active species may be carbonyl sulfide (SCO) derived from carbon monoxide and sulfur. Sonoda et al. developed a series of selenium-catalyzed reactions [6,7]. Yang et al. synthesized a series of unsymmetrical

^{*} Corresponding author. Tel.: +86-411-369-8749;

E-mail address: lg1966cn@yahoo.com.cn (S. Lu).

^{1381-1169/03/}\$ – see front matter © 2003 Elsevier Science B.V. All rights reserved. doi:10.1016/S1381-1169(03)00188-2

phenylurea in one-pot reaction by first combining selenium-catalyzed oxidative carbonylation of amines with reductive carbonylation of aromatic nitro compounds under relatively mild conditions [8]. Xue et al. found that nitrobenzene reacted with aminopyridine to give phenylpyridylureas [9].

In this paper, selenium-catalyzed reductive carbonylation of substituted nitrobenzenes with aminomethylpyrimidine derivatives as co-reagents was studied, and a series of substituted N-phenyl-N'-methylpyrimidylurea derivatives were synthesized.

2. Experimental

Melting points were determined on a Taike X-4 apparatus (Beijing, China) and were uncorrected. ¹H and ¹³C NMR spectra were obtained on a Bruker DRX 400 spectrometer. Chemical shifts were reported in ppm relative to tetramethylsilane (δ -units), and dimethylsulfoxide-d₆ G.R. as solvent. Solvent toluene was reagent grade and used without further purification. Elemental selenium (99.999%), carbon monoxide (99.9%), nitro compounds, aminopyrimidines and triethylamine were used as purchased.

Typical procedure for synthesis of N-phenyl-N'-3-(2,6-dimethyl-4-pyrimidyl)urea: Selenium (39.5 mg, 0.5 mmol), 4-amino-2,6-dimethylpyrimidine (1.30 g, 10 mmol), nitrobenzene (1.23 g, 10 mmol), triethylamine (2.02 g, 20 mmol) and toluene (10 ml) were placed in a 100ml stainless-steel autoclave. The reactor was sealed, carbon monoxide (3.0 MPa) was introduced to the system, and the reaction vessel was placed in the oil bath preheated to 150 °C, with stirring. After 4 h, the apparatus was cooled to room temperature, and the remaining carbon monoxide was evacuated. The reaction mixture was then evaporated, and the N-phenyl-N'-3-(2,6-dimethyl-4-pyrimidyl)urea was obtained in 82.6% (2.0 g) as a pure by a flash chromatography (silica gel, hexane: AcOEt = 10:3).

3. Results and discussion

3.1. Carbonylation of substituted nitrobenzenes with 4-amino-2,6-dimethylpyrimidine

Substituted nitrobenzenes reacted with 4-amino-2,6dimethylpyrimidine in the presence of selenium and carbon monoxide according to following equation, and the results were summarized in Table 1 (Scheme 1).

Conditions: substrate, 10 mmol; 4-amino-2,6-dimethylpyrimidine, 10 mmol; Se, 0.5 mmol; Et₃N, 20 mmol; CO, 3.0 MPa; PhMe, 10 ml; 150 °C; 4.0 h.

3.2. Carbonylation of substituted nitrobenzenes with 2-amino-4,6-dimethylpyrimidine

Substituted nitrobenzenes reacted with 2-amino-4. 6-dimethylpyrimidine in the presence of selenium and carbon monoxide according to following equation, and the results were summarized in Table 2 (Scheme 2).

Conditions: substrate, 10 mmol; 2-amino-4,6-dimethylpyrimidine, 10 mmol; Se, 0.5 mmol; Et₃N, 20 mmol; CO, 3.0 MPa; PhMe, 10 ml; 150 °C; 4.0 h.

In the tables, it is found that the catalytic system is very efficient and the yields of products are moderate to good.

Scheme 1.

24

Scheme 2

Entry	Substrates	Products	mp (°C) (lit.)	Yield (%)
1		$\begin{array}{c c} H_{3}C & O \\ N & -NH - C - NH - H_{3}C \\ H_{3}C & -N \end{array}$	229–231 (226) [10]	82.6
2	CH ₃ NO ₂	$\begin{array}{c} H_{3}C \\ N \\ N \\ H_{3}C \\ N \\ H_{3}C \\ \end{array} \\ N \\ N$	203–204 (205) [10]	70.3
3	H ₃ C	H_{3C} N $NH-C-NH$ CH_{3} CH_{3}	194–196	55.4
4	F ₃ C NO ₂	$H_{3C} \xrightarrow{N} NH^{-}C^{-}NH^{-} \xrightarrow{CF_{3}} CF_{3}$	229–230 (232) [10]	83.0
5	CI NO ₂	$\begin{array}{c} H_{3}C & O \\ N & -NH-C-NH \\ H_{3}C & N \end{array}$	221–222 (225) [9]	83.0
6		H_{3C} N	222 (215) [10]	57.8
7		$\begin{array}{c} H_{3}C & \bigcirc \\ N & \bigcirc \\ H_{3}C & NH - C - NH - \bigcirc \\ H_{3}C & CI \end{array}$	209–211	41.5
8	^j Pr NO ₂	$H_{3}C$ O Pr $H_{3}C$ $NH-C-NH$ $H_{3}C$	182–183	73.9
9	ipr-NO2	H_{3C} N $NH-C-NH$ iPr	187–189	73.9
10		$H_{3C} \rightarrow H_{3C} \rightarrow H_{1C} \rightarrow H$	210–212	93.0
11	NC	H_{3C} O NH-C-NH-C-NH-C-NH-CN	269–272	86.1
12		$\begin{array}{c} H_{3}C & O \\ N & NH-C-NH-O \\ H_{3}C & N \end{array}$	195–198	71.8
13		$H_{3C} \xrightarrow{O} H_{3C} \xrightarrow{Cl} H_{3$	240	89.3

Table 1 Carbonylation of substituted nitrobenzenes with 4-amino-2,6-dimethylpyrimidine

Entry	Substrates	Products	mp (°C) (lit.)	Yield (%)
14		H_3C O Cl N $-NH-C-NH$ $-CH_3$ H_3C N $-NH-C-NH$ $-CH_3$	221–223	85.9
15	O H ₃ C-C	$\begin{array}{c} H_{3}C & \bigcirc \\ N & \frown \\ H_{3}C & \frown \\ N & \frown \\ H_{3}C & \frown \\ N & \frown \\ $	217–218	50.2

Table 1 (Continued)

From a synthetic point of view, mild reaction conditions, good yields, one step to synthesize products and no use of toxic phosgene make the present reaction an useful method for the synthesis of *N*-phenyl-N'-methylpyrimidylurea derivatives. Further work related to the mechanism of the reaction is currently under way.

3.3. Analytical data

1-Phenyl-3-(2,6-dimethyl-4-pyrimidyl)urea: ¹H NMR: δ 2.58 (s, 3H, $-CH_3(13)$); 2.39 (s, 3H, $-CH_3(12)$); 7.02 (s, 1H, pyrimidyl 9); 7.50 (d, 2H, phenyl 1, 5); 7.30 (t, 2H, phenyl 2, 4); 7.04 (t, 1H, phenyl 3); 10.73 (s, 1H, pyrimidyl-NH-); 9.67 (s, 1H, phenyl-NH-); ¹³C NMR: δ 25.2 (-CH₃(13)); 23.6 (-CH₃(12)); 118.6 (phenyl 1); 128.2 (phenyl 2); 122.4 (phenyl 3); 138.0 (phenyl 6); 151.5 (C=O 7); 158.1 (pyrimidyl 8); 103.5 (pyrimidyl 9); 164.9 (pyrimidyl 10); 166.2 (pyrimidyl 11). MS (E.I., 70 eV): *m/z*: 242 (*M*⁺, 100%). Microanalytical results (calc.): C: 64.14% (64.45%); H: 5.80% (5.82%); N: 22.92% (23.13%) (Scheme 3).

1-(3-Trifluoromethyl-phenyl)-3-(2,6 - dimethyl - 4 pyrimidyl)urea: ¹H NMR: δ 2.52 (s, 3H, $-CH_3(13)$); 2.37 (s, 3H, $-CH_3(12)$); 7.26 (s, 1H, pyrimidyl 9); 7.60 (d, 1H, phenyl 1); 7.28 (t, 1H, phenyl 2); 7.38 (d, 1H, phenyl 3); 8.08 (s, 1H, phenyl 5); 10.43 (s, 1H, pyrimidyl-NH-); 9.77 (s, 1H, phenyl-NH-); ¹³C

NMR: δ 25.3 (-CH₃(13)); 23.8 (-CH₃(12)); 125.4 (phenyl 1); 129.8 (phenyl 2); 129.7 (phenyl 3); 130.1 (phenyl 4); 114.5 (phenyl 5); 139.3 (phenyl 6); 151.7 (C=O 7); 158.1 (pyrimidyl 8); 103.8 (pyrimidyl 9); 165.9 (pyrimidyl 10); 167.3 (pyrimidyl 11). MS (E.I., 70 eV): *m/z*: 310 (*M*⁺, 100%). Microanalytical results (calc.): C: 53.93% (54.19%); H: 4.09% (4.22%); N: 17.84% (18.06%).

1-(3-Chloro-2-methyl-phenyl)-3-(2,6 - dimethyl - 4pyrimidyl)urea: ¹H NMR: δ 2.49 (s, 3H, -CH₃(13)); 2.38 (s, 3H, -CH₃(12)); 7.04 (s, 1H, pyrimidyl 9); 7.91 (d, 1H, phenyl 1); 7.20 (t, 1H, phenyl 2); 7.16 (d, 1H, phenyl 3); 2.34 (s, 3H, 5-CH₃); 10.27 (s, 1H, pyrimidyl-NH-); 9.80 (s, 1H, phenyl-NH-); ¹³C NMR: δ 24.8 (-CH₃(13)); 23.3 (-CH₃(12)); 120.1 (phenyl 1); 125.7 (phenyl 2); 123.7 (phenyl 3); 133.2 (phenyl 4); 126.5 (phenyl 5); 138.0 (phenyl 6); 14.3 (5-CH₃); 151.4 (C=O 7); 158.1 (pyrimidyl 8); 103.4 (pyrimidyl 9); 165.2 (pyrimidyl 10); 166.6 (pyrimidyl 11). MS (E.I., 70 eV): m/z: 290 (M^+ , 100%). Microanalytical results (calc.): C: 57.76% (57.83%); H: 5.12% (5.20%); N: 18.40% (19.27%).

1-(3-Chloro-4-methyl-phenyl)-3-(2,6- dimethyl - 4pyrimidyl)urea: ¹H NMR: δ 2.49 (s, 3H, $-CH_3(13)$); 2.34 (s, 3H, $-CH_3(12)$); 7.19 (s, 1H, pyrimidyl 9); 7.28 (d, 1H, phenyl 1); 7.21 (d, 1H, phenyl 2); 7.32 (s, 1H, phenyl 5); 2.27 (s, 3H, 3- CH_3); 10.26 (s, 1H, pyrimidyl-NH-); 9.68 (s, 1H, phenyl-NH-); ¹³C NMR: δ 25.3 (- $CH_3(13)$); 23.8 (- $CH_3(12)$); 117.5 (phenyl 1); 129.4 (phenyl 2); 133.2 (phenyl 3); 137.5 (phenyl 4); 118.6 (phenyl 5); 137.6 (phenyl 6); 18.8 (3- CH_3); 151.5 (C=O 7); 158.2 (pyrimidyl 8); 103.7 (pyrimidyl 9); 165.7 (pyrimidyl 10); 167.1 (pyrimidyl 11). MS (E.I., 70 eV): *m/z*: 290 (*M*⁺, 100%).

Entry	Substrates	Products	mp (°C) (lit.)	Yield (%)
1		$H_{3C} \xrightarrow{N} NH - U = NH$	200–202	78.5
2	CH ₃ -NO ₂	$H_{3C} \xrightarrow{N} O \\ \longrightarrow NH-C-NH \\ H_{3C} \xrightarrow{H_{3C}} NH \\ H_{3C} \xrightarrow{H_{3C}} H_{3C$	196–198	78.1
3	H ₃ C	$\begin{array}{c} H_{3}C & \bigcap \\ H_{3}C & N \\ H_{3}C & N \end{array} \xrightarrow{O} \\ H_{3}C & CH_{3} \end{array}$	188–190	47.2
4	F ₃ C NO ₂	$\begin{array}{c} H_{3}C & O \\ & & \\ H_{3}C & \\ H_{3}C & \\ \end{array} \\ \begin{array}{c} O \\ CF_{3} \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ CF_{3} \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ CF_{3} \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ CF_{3} \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ CF_{3} \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ CF_{3} \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ CF_{3} \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ CF_{3} \end{array} \\ \begin{array}{c} O \\ O \\ O \\ O \\ CF_{3} \end{array} \\ \begin{array}{c} O \\ O $	210–211	64.5
5		$\begin{array}{c} H_{3}C & O \\ H_{3}C & NH-C-NH \\ H_{3}C & Cl \end{array}$	195–196	75.8
6		$H_{3}C$ N $H_{2}C$ N $H_{3}C$ N	209–210	32.3
7		H_{3C} NH-C-NH-C-NH-Cl	207–208 (216) [11], (211–212) [12]	44.5
8	NO ₂	H_{3C} N O H_{3C} NH-C-NH- H_{3C} NH-C-NH-	180–182	70.4
9	ipr NO2	H_{3C} N H_{3C} N $NH-C-NH$ H_{3C} P_{r}	150–153	45.8
10		$H_{3}C$ N O $H_{3}C$ N $H-C-NH$	207–209	81.0
11	NC	H_{3C} N $NH-C-NH$ CN H_{3C} $NH-C-NH$	241–243	74.9
12		$\begin{array}{c} H_{3}C & O \\ H_{3}C & NH-C-NH-O \\ H_{3}C & O \\ \end{array}$	184–185	74.8
13		$\begin{array}{c} H_{3}C \\ H_{3}C \\ H_{3}C \end{array} \xrightarrow{N} NH \xrightarrow{C} NH \xrightarrow{H_{3}C} CI \\ H_{3}C \xrightarrow{H_{3}C} NH \xrightarrow{H_{3}C} NH \xrightarrow{H_{3}C} CI \\ H_{3}C \xrightarrow{H_{3}C} NH $	211–212	65.0

 Table 2

 Carbonylation of substituted nitrobenzenes with 2-amino-4,6-dimethylpyrimidine

Entry	Substrates	Products	mp (°C) (lit.)	Yield (%)
14	Cl H ₃ C———NO ₂	H_3C N O H_3C $NH-C-NH$ CH_3 H_3C $NH-C-NH$ CI	189–191	82.5
15	H ₃ C-C-NO ₂	H_3C N H_3C $NH-C-NH$ O H_3C H_3C $NH-C-NH$ O H_3C $C-CH_3$	220-223	47.3

Table 2 (Continued)

Microanalytical results (calc.): C: 57.06% (57.83%); H: 5.41% (5.20%); N: 18.65% (19.27%).

1-(2-Chloro-phenyl)-3-(2,6-dimethyl-4-pyrimidyl)urea: ¹H NMR: δ 2.48 (s, 3H, -CH₃(13)); 2.37 (s, 3H, -CH₃(12)); 6.87 (s, 1H, pyrimidyl 9); 8.33 (d, 1H, phenyl 1); 7.34 (t, 1H, phenyl 2); 7.10 (t, 1H, phenyl 3); 7.49 (d, phenyl 4); 11.33 (s, 1H, pyrimidyl-NH-); 10.27 (s, 1H, phenyl-NH-); ¹³C NMR: δ 25.2 (-CH₃(13)); 23.7 (-CH₃(12)); 121.1 (phenyl 1); 127.4 (phenyl 2); 121.9 (phenyl 3); 129.0 (phenyl 4); 123.7 (phenyl 5); 135.4 (phenyl 6); 151.4 (C=O 7); 158.1 (pyrimidyl 8); 103.6 (pyrimidyl 9); 165.0 (pyrimidyl 10); 166.6 (pyrimidyl 11). MS (E.I., 70 eV): m/z: 276 (M^+ , 100%). Microanalytical results (calc.): C: 56.91% (56.42%); H: 5.05% (4.74%); N: 20.06% (20.25%).

1-O-tolyl-3-(2, 6-dimethyl-4-pyrimidyl)urea: ¹H NMR: δ 2.48 (s, 3H, $-CH_3(13)$); 2.33 (s, 3H, $-CH_3(12)$); 6.97 (s, 1H, pyrimidyl 9); 8.04 (d, 1H, phenyl 1); 7.19 (t, 1H, phenyl 2); 6.97 (t, 1H, phenyl 3); 7.15 (d, phenyl 4); 2.33 (s, 3H, 5- CH_3); 10.44 (s, 1H, pyrimidyl-NH-); 10.03 (s, 1H, phenyl-NH-); ¹³C NMR: δ 25.2 (- $CH_3(13)$); 23.7 (- $CH_3(12)$); 120.2 (phenyl 1); 126.0 (phenyl 2); 122.8 (phenyl 3); 126.6 (phenyl 4); 129.9 (phenyl 5); 136.7 (phenyl 6); 18.3 (5- CH_3); 151.4 (C=O 7); 158.4 (pyrimidyl 8); 103.5 (pyrimidyl 9); 165.1 (pyrimidyl 10); 166.4 (pyrimidyl 11). MS (E.I., 70 eV): *m/z*: 256 (*M*⁺, 100%). Microanalytical results (calc.): C: 65.68% (65.61%); H: 7.17% (6.29%); N: 21.99% (21.86%).

1-(3-Isopropyl-phenyl)-3-(2,6-dimethyl-4 - pyrimidyl)urea: ¹H NMR: δ 2.49 (s, 3H, -CH₃(13)); 2.34 (s, 3H, -CH₃(12)); 6.93 (s, 1H, pyrimidyl 9); 7.27 (d, 1H, phenyl 1); 7.23 (t, 1H, phenyl 2); 7.21 (d, 1H, phenyl 3); 7.29 (s, phenyl 5); 2.87 (m, 1H, 4-CH); 1.20 (d, 6H, ⁱPr-CH₃); 10.44 (s, 1H, pyrimidyl-NH-); 10.03 (s, 1H, phenyl-NH-); ¹³C NMR: δ 25.3 (-CH₃(13)); 23.8 (-CH₃(12)); 116.2 (phenyl 1); 128.6 (phenyl 2); 120.7 (phenyl 3); 149.0 (phenyl 4); 116.6 (phenyl 5); 138.3 (phenyl 6); 25.3 (ⁱPr-CH₃); 33.5 (4-CH); 151.4 (C=O 7); 158.3 (pyrimidyl 8); 103.5 (pyrimidyl 9); 165.5 (pyrimidyl 10); 166.8 (pyrimidyl 11). MS (E.I., 70 eV): *m/z*: 284 (*M*⁺, 100%). Microanalytical results (calc.): C: 68.15% (67.58%); H: 7.23% (7.09%); N: 19.22% (19.70%) (Scheme 4).

1-Phenyl-3-(4, 6-dimethyl-2-pyrimidyl)urea: ¹H NMR: δ 2.41 (s, 6H, $-CH_3(11, 12)$); 6.84 (s, 1H, pyrimidyl 10); 7.56 (d, 2H, phenyl 1, 5); 7.33 (t, 2H, phenyl 2, 4); 7.04 (t, 1H, phenyl 3); 11.51 (s, 1H, pyrimidyl-NH-); 9.18 (s, 1H, phenyl-NH-); ¹³C NMR: δ 22.7 (-CH₃(11,12)); 118.8 (phenyl 1); 128.3 (phenyl 2); 122.4 (phenyl 3); 138.2 (phenyl 6); 150.9 (C=O 7); 167.0 (pyrimidyl 8); 157.0 (pyrimidyl 9); 113.1 (pyrimidyl 10). MS (E.I., 70 eV): m/z: 242 (M^+ , 100%). Microanalytical results (calc.): C: 64.21% (64.45%); H: 5.57% (5.82%); N: 22.73% (23.13%).

1-O-tolyl-3-(4, 6-dimethyl-2-pyrimidyl)urea: ¹H NMR: δ 2.40 (s, 6H, -CH₃(11, 12)); 6.90 (s, 1H, pyrimidyl 10); 8.13 (d, 1H, phenyl 1); 7.22 (t, 1H, phenyl 2); 6.98 (t, 1H, phenyl 3); 7.17 (d, 1H, phenyl 4); 2.27 (s, 3H, 5-CH₃); 11.41 (s, 1H, pyrimidyl-NH-); 9.96 (s,

Scheme 4.

1H, phenyl-NH-); 13 C NMR: δ 23.3 (-CH₃(11, 12)); 120.0 (phenyl 1); 122.6 (phenyl 2); 126.1 (phenyl 3); 126.6 (phenyl 4); 130.1 (phenyl 5);138.3 (phenyl 6); 18.0 (5-CH₃); 151.5 (C=O 7); 167.5 (pyrimidyl 8); 151.5 (pyrimidyl 9); 113.8 (pyrimidyl 10). MS (E.I., 70 eV): m/z: 256 (M^+ , 100%). Microanalytical results (calc.): C: 65.65% (65.61%); H: 5.78% (6.29%); N: 21.70% (21.86%).

1-(3-Trifluoromethyl-phenyl)-3-(4, 6-dimethyl-2pyrimidyl)urea: ¹H NMR: δ 2.43 (s, 6H, -CH₃(11, 12)); 6.89 (s, 1H, pyrimidyl 10); 7.67 (d, 1H, phenyl 1); 7.35 (t, 1H, phenyl 2); 7.53 (d, 1H, phenyl 3); 8.06 (s, 1H, phenyl 5); 11.85 (s, 1H, pyrimidyl-NH-); 9.53 (s, 1H, phenyl-NH-); ¹³C NMR: δ 23.3 (-CH₃(11, 12)); 125.5 (phenyl 1); 129.8 (phenyl 2); 122.7 (phenyl 3); 130.1 (phenyl 4); 114.9 (phenyl 5);139.4 (phenyl 6); 119.2 (-CF₃); 151.6 (C=O 7); 167.6 (pyrimidyl 8); 157.2 (pyrimidyl 9); 113.9 (pyrimidyl 10). MS (E.I., 70 eV): *m/z*: 310 (*M*⁺, 100%). Microanalytical results (calc.): C: 54.01% (54.19%); H: 3.98% (4.22%); N: 17.93% (18.06%).

1-(4-Chloro-phenyl)-3-(4, 6-dimethyl-2-pyrimidyl)urea: ¹H NMR: δ 2.42 (s, 6H, -CH₃(11, 12)); 6.90 (s, 1H, pyrimidyl 10); 7.62 (d, 2H, phenyl 1, 5); 7.39 (d, 2H, phenyl 2, 4); 11.96 (s, 1H, pyrimidyl-NH-); 10.03 (s, 1H, phenyl-NH-); ¹³C NMR: δ 23.3 (-CH₃(11, 12)); 120.5 (phenyl 1, 5); 126.4 (phenyl 2, 4); 128.8 (phenyl 3); 137.6 (phenyl 6); 151.5 (C=O 7); 167.5 (pyrimidyl 8); 157.2 (pyrimidyl 9); 113.8 (pyrimidyl 10). MS (E.I., 70 eV): *m/z*: 276 (*M*⁺, 100%). Microanalytical results (calc.): C: 57.11% (56.42%); H: 4.83% (4.74%); N: 20.01% (20.25%).

1-(4-Cyano-phenyl)-3-(4, 6-dimethyl-2-pyrimidyl)urea: ¹H NMR: δ 2.42 (s, 6H, -CH₃(11, 12)); 6.93 (s, 1H, pyrimidyl 10); 7.78 (d, 2H, phenyl 1, 5); 7.74 (d, 2H, phenyl 2, 4); 12.27 (s, 1H, pyrimidyl-NH-); 112.27 (s, 1H, phenyl-NH-); ¹³C NMR: δ 23.3 (-CH₃(11, 12)); 119.0 (phenyl 1, 5); 133.4 (phenyl 2, 4); 104.5 (phenyl 3); 143.0 (phenyl 6); 119.0 (-CN); 151.4 (C=O 7); 167.6 (pyrimidyl 8); 157.0 (pyrimidyl 9); 114.1 (pyrimidyl 10). MS (E.I., 70 eV): *m/z*: 267 (*M*⁺, 100%). Microanalytical results (calc.): C: 62.83% (62.91%); H: 5.14% (4.90%); N: 26.11% (26.20%). 1-(3-Chloro-phenyl)-3-(4, 6-dimethyl-2-pyrimidyl)urea: ¹H NMR: δ 2.41 (s, 6H, $-CH_3(11, 12)$); 6.85 (s, 1H, pyrimidyl 10); 7.38 (d, 1H, phenyl 1); 7.06 (t, 1H, phenyl 2); 7.05 (d, 1H, phenyl 3); 7.78 (s, 1H, phenyl 5); 11.82 (s, 1H, pyrimidyl-NH-); 9.59 (s, 1H, phenyl-NH-); ¹³C NMR: δ 22.9 (-CH₃(11, 12)); 117.1 (phenyl 1); 129.7 (phenyl 2); 121.9 (phenyl 3); 132.9 (phenyl 4); 118.0 (phenyl 5);139.7 (phenyl 6); 150.9 (C=O 7); 166.9 (pyrimidyl 8); 156.8 (pyrimidyl 9); 113.3 (pyrimidyl 10). MS (E.I., 70 eV): m/z: 276 (M^+ , 100%). Microanalytical results (calc.): C: 56.14% (56.42%); H: 4.89% (4.74%); N: 19.96% (20.25%).

1-(3-Chloro-2-methyl-phenyl)-3-(4, 6-dimethyl-2pyrimidyl)urea: ¹H NMR: δ 2.50 (s, 6H, -CH₃(11, 12)); 6.89 (s, 1H, pyrimidyl 10); 8.07 (d, 1H, phenyl 1); 7.17 (t, 1H, phenyl 2); 7.13 (d, 1H, phenyl 3); 2.40 (s, 3H, 5-CH₃); 11.58 (s, 1H, pyrimidyl-NH-); 10.02 (s, 1H, phenyl-NH-); ¹³C NMR: δ 23.3 (-CH₃(11, 12)); 119.3 (phenyl 1); 124.8 (phenyl 2); 123.4 (phenyl 3); 133.2 (phenyl 4); 126.9 (phenyl 5);138.6 (phenyl 6); 15.1 (5-CH₃); 151.4 (C=O 7); 167.2 (pyrimidyl 8); 157.2 (pyrimidyl 9); 113.7 (pyrimidyl 10). MS (E.I., 70 eV): *m/z*: 290 (*M*⁺, 100%). Microanalytical results (calc.): C: 58.11% (57.83%); H: 5.33% (5.20%); N: 18.86% (19.27%).

References

- [1] E. Lilly, GB 1316333 (1970).
- [2] L. Benes, B. Rada, A. Borovansky, Cesk. Farm. 26 (1977) 154.
- [3] A.M. Tafesh, J. Weiguny, Chem. Rev. 96 (1996) 2035.
- [4] R.A. Franz, F. Applegath, F.V. Morris, J. Org. Chem. 26 (1961) 3306.
- [5] R.A. Franz, F. Applegath, F.V. Morris, F. Baiocchi, C. Bolze, J. Org. Chem. 26 (1961) 3309.
- [6] N. Sonoda, Pure Appl. Chem. 65 (4) (1993) 699.
- [7] N. Sonoda, T. Yasuhara, K. Kondo, T. Ikeda, S. Tsutsund, J. Am. Chem. Soc. 93 (1971) 6344.
- [8] Y. Yang, S.W. Lu, Tetrahedron Lett. 40 (1999) 4845.
- [9] Y. Xue, S.W. Lu, Chin. J. Catal. 22 (4) (2001) 387.
- [10] A. Gilles, D. Marguerite, R. Richard, J. Med. Chem. Chim. Ther. 16 (4) (1981) 345.
- [11] N. P. Buu, N. D. Xuong, V. T. Suu, J. Chem. Soc. (1958) 2815–2818.
- [12] S. Birtwell, J. Chem. Soc. (1953) 1725.